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F. DELALE and F. ERDOGAN

Lehigh University, Bethlehem, PA 18015, U.S.A.

(Received 18 May 198\)

AIIItract-ln this paper the problem of an elastic half plane containing a crack and stilfened by a cover
plate is considered. First. the asymptotic nature of the stress state in the half plane around an end point of
the sliffner is studied in order to determine the likely orientation of a possible fracture initiation and growth.
The problem is then formulated for an arbitrarily oriented radial crack in terms of a system of singular
integral equations. For an internal crack and for an edge crack. the problem is solved and the stress
intensity factors at the crack tips and the interface stress are calculated. The case of a cracked half plane
for two symmetrically localted cover plates is then considered. From a fracture viewpoint, the case of two
stiffeners appears to be more severe than that of a single stiffner.

I. INTRODUCTION
In the relatively recent past, there has been considerable interest in the analysis of "cover
plates" as a problem in structural mechanics. This is primarily due to the fact that the structural
components with a variety of bonded or welded stiffeners and the solid state devices containing
elastic wafers fuse-bonded to elastic substrates may be approximated by a cover plate bonded
to an elastic solid. In most cases, since the stiffner is relatively very thin compared to the
remaining dimensions of the structure, it is approximated by an elastic "membrane" neglecting
the normal stress along the interface. Typical examples for such studies may be found in [1-3).
The primary interest in these and similar studies has been in the evaluation of the contact shear
along the interface. The results given in (3) for various elastic and inextensible cover plate
geometries show that, at the end points of the stiffener, not only the contact shear stress but
also the stress state in the substrate has a ,-1/2 singularity. This suggests that such points of
stress singularity are locations of potential failure initiation. Furthermore, if the bond is
sufficiently strong, the most likely failure mechanism would be the initiation and propagation of
a crack in the substrate along the weakest cleavage plane emanating from the singular point. To
study the related failure problem, one needs to determine the weakest cleavage plane in the
elastic half plane and to solve the corresponding crack problem by placing a crack of arbitrary
length along this plane.

A problem similar to that described above was considered in a recent paper [4), where it was
assumed that the stiffener is perfectly rigid and the crack is perpendicular to the boundary.
Aside from the assumption regarding the stiffness of the cover plate which may not be very
realistic for most practical applications, in (4) it is found that the nature of the stress
singularities at both ends of the cover plate are identical to that of stiffened uncracked elastic
half plane where the power of singularity is complex. This is clearly incorrect as the zero
traction-zero displacement mixed boundary conditions which prevails in the half plane near the
end points are for a wedge of angle 1T at one end and .",2 at the other.t At the crack end of the
stiffener, that is, for the 90° wedge, the power of the singularity is less than one half and is
real [5].

The general formUlation given in this paper may be used to reduce a number of crack­
stiffner or crack-eontact problems (including that discussed in [4]) to a system of integral
equations. Since the kernels in these integral equations are known in closed form and are
relatively simple functions, quite accurate solutions to the problem may be obtained with a
minimal computational effort.

tThis work was supported by NASA-Langley under the grant NGR·39.()()7-o11 and by NSF under the grant
CME-78..()9737.

mis is due to "rounding"the corners by approximating the mapping function by arational function used in [4} for mapping
the cracked half plane into a circle.
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2. FORMULATION OFTHE PROBLEM
The problem under consideration is that of an elastic half plane ( - co < X < co, Y< 0) which

contains an arbitrarily oriented crack and is subjected to a given set of external loads. Along the
boundary Y= 0 the plane may contain a bonded stiffener or may be loaded through a stamp.
Perhaps the simplest way to solve the problem would be to reduce it to a system of integral
equations in which the crack surface displacements and the contact stresses on the boundary
are the unknown functions. To derive the integral equations, in addition to the solution of the
problem for the half plane under the given applied loads but without the crack and the stiffener,
it is sufficient to obtain the solution for a dislocation in the plane and a concentrated force on
the boundary.

Consider a half plane (- cc < X< co, -cc< y < 0) with the elastic constantsK2' J.L2(K2 =:; 3 - 4V2

for plane strain and K2 = (3 1'2)/(1 + 1'2) for plane stress) which contains a dislocation at the
point (XI> YI) having a Burger's vector b. Let the components of the Burger's vector be bx =:; II
and by = 12. Referring to [6] the stress state in the half plane due to II and f2 may be expressed
as

) 2J.L2
O"lxxCX, Y = 11'"(1 + K2)[K Il (x, Y, XJ, YI)/I +K I2(X, Y, XI' YI)h],

- 2fl:2 [ K fO"lxy(X, y) - 11'"(1 + K2) K21 (X, y, XJ, YI)/I + 22(X, Y, XJ, YI) 2],

O"lyy(X, y) =:; 1I'"(;~2K2)[K31(X' Y, XJ, YI)/t +K 32(x, Y, Xl! YI)/2] (l.a-c)

where the functions K ij are given in Appendix A.
Tbe second basic solution needed to formulate the problem is tbatof a half plane under

concentrated forces /3 and /4 acting on the boundary at (x =Xo, Y=0) in x and Y directions,
respectively. This solution is given by

2 3 2 fO"2xt(X, y) = - -:4[(X -.to) !J + (x -.to) Y 4],
1Tr

(2a-c)

where

(3)

For this loading condition, the displacement derivatives on the boundary y=:;O may be
expressed as

(4a,b)

The third problem is the determination of tbe stress state in tbe half plane having no crack
llnd no stiffener and SUbjected to tbe actual applied loads. This stress state will be designated by
O"aij(X, y), (i, j = x, y). For example, in a plane under uniform tension Po in x-direction,we have

(5a-c)

Consider now the problem described in Fig. 1. If the cover plate is approximated by a
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Fig. I. Geometry of the stiffened elastic half plane containing a crack.

membrane, u" =0 and the equilibrium condition in x-direction gives

8 au I"~t+ I -;-lh = f3(Xo) dXo + PI
Kl uX -24

(6)

where ILl and KI are the elastic constants, h the thickness, u. the displacement, 2a the. length of
the stiffener, PI and P2 the additional forces which may be acting on the stiffener, and
!3(Xo) =U", the shear stress acting on the contact region (Fig. 1). Note that

(7)

If we assume that the half plane contains a crack along the line L, the Burger's vector
b(f" h) would be a continuously distributed function with the coordinates x. and 1. on L.
Clearly, fl(xl> y.), f,(XI> 1.) and h(Xo) are tbe unknown functions of tbe problem which may be
determined from the traction boundary conditions on the crack surface and the displacement
continuity along the contact area. Anticipating the crack initiation at an end region of the
stiffener, consider the specific radial crack geometry shown in Fig. l. The boundary conditions
on the crack surface may be expressed as

UIIII(S) =U"" cos2 8+u" sin2 8+u", sin 28 =0, C < S < d,

u.,,(s) =(u"" - u,,) sin 8 cos 8- u", cos 28 =0, C < s < d,

where (see eqns I, 2 and 5)

Uii =UUi + U2ij + U4 ii> (~j) =(x, y~.

On the line of the crack note that

x = s sin 8, y = - s cos 8,

and we let

xl=/sin8, YI=-lcos8, (c'<t<t/).

(8a, b)

(9)

(10)

(11)

Now, observing that 110 12 and 13 are distributed functions, substituting from (1), (2), (5), (9) and
ss Vol. ". No. S-B
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(10) into (8) we obtain the following two integral equations:

f kll(s, t)f.(t) dt +f k\2(S, t)!2U) dt +f2. k13(s, xo)!J(xo) dxo

=- Po cos2 fJ, (c < s < d),

f k21 (S, t)fl(t) dt +f k22(S, t)Ut) dt +f2. k23(S, Xo)!J(xo) dxo

= - Po sin fJ cos fJ, (c < s < d), 02a, b)

where the kernels ki;' (i = I, 2; j = 1,2,3) are given in Appendix B. Since the crack is an
embedded crack, from the condition of single-valuedness of displacements it follows that

f f\(t) dt =0, f !2(t) dt =O. (l3a, b)

The third integral equation is obtained by expressing the condition of continuity of au! ax
along the interface y = 0, - 2a < x < 0, namely

(14)

The strain aud ax is given by (6). aU2! ax is obtained by adding the strains given by the stress
states (I), (2) (which is given by eqn 4a), and (5), and again keeping in mind that fl' 12 and !J are
distributed functions. Thus, for the crack geometry and the applied loads given in Fig. 1 we
obtain

f k31 (X, t)f.(t) dt +f kdx, t)f2(t) dt +f2. kn(x, Xo)!J(Xo) dxo

I+K2 I+K,p (2 0)
= - 81J-2 Po+ 8hIJ-I b - a < x < ,

where the kernels k3j, (j = 1,2,3) are also given in Appendix B.

(15)

3. THE UNCRACKED PLANE

To determine the direction of crack initiation in the plane, the asymptotic stress state near
the end points of the stiffener needs to be analyzed. In the uncracked plane, the external loads
are the actual applied loads (e.g. O'u(oo, y) = Po) and the contact stresses on the stiffener-half
plane interface. If the stiffener is approximated by a membrane, the contact stress O'yy(x, 0) =
/4(x) is zero and referring to the insert in Fig. 2, for PI = P2 = 0, O'%,(x. 0) = /3(x) is determined
from (see eqn 15)

subject to

Defining

r fbo) dXo = O. (17)

(18)
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Fig. 2. Angular distribution of the cleavage stress 0'.. in the half plane around the end point of the stiffener.

eqns (16) and (17) may be expressed as

385

Ifl '(1') Af' fl- ~d1'-- f(1')d1'=-poI2. (-I<t<1). _If(1')d,,=O
1T'_I1'-t 4_1

(19a. b)

which are solved numerically.
Once 13(Xo) is determined. by substituting from (2) into the transformation formulas (8) and

integrating in xo, one may easily obtain the cleavage stress Uftft along n =0 as follows:

..!..u••(r, 8) = -.!.f I {[r sin 8+ (1 - 1')/2]3 cos2 fJ + [r sin 8
Po 1T' -I

+ (1- 1')/2]r sin2 8 cos2 8 - 2r[r sin 8

+ (1- 1')/2]2 sin 8 cos2 fJHr cos2 8+ [r sin 8

+ (1- 1')/2]2t2f( 1') d1' +cos2 8. (0 < r < 00). (20)

where r = s/b. Also, on the boundary y =0 the stress component Uu may be obtained from (2a)
as follows:

..!..Uu (X.0)=1+ 1fl
f(1')d1'. x=b(t+I)/2, (-oo<t<oo).

Po 1T' -11'- t

Note that the solution of (19a) is of the form

(21)

(22)

F(1') being a bounded function. Thus. after determining F(,,) from (19). up(r. 9) and u.u(.x, 0)
may be obtained from (20) and (21) by using the standard Gaussian intelflltion formulas[7].
Figure 2 shows the variation of the cleavage stress Up with the angle fJ for a fixed value of
r = s/b. The value of r seems to affect primarily the magnitude rather than the anplar variation
of Uftft. The angle at which Uftft is maximum is approximately 3°. By cbanaioa A it was also
observed that this angle does not seem to vary significantly with material constants. Therefore,
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for the remainder of this study, it will be assumed that the weak cleavage plane in the elastic
half space is 8 == O. This way the integral equations and the subsequent asymptotic analysis are
simplified quite considerably without significantly altering the qualitative behavior of the
results. Along the plane 8 = 0, the variation of the cleavage stress a•• (s. 0) = axAb, y) is shown
in Fig. 3. From (20) it can be shown that a•• has a singularity of the form S-11 in the
neighborhood of the end points of the stiffener. Thus. a•• becomes unbounded as s ..... o.

By substituting from (22) into (21) and by using the properties of the Cauchy-type integrals
or that of the Chebishev polynomials, it may easily be shown that [7} the function axAx, O)
defined by (21) is bounded in - I < t < I, (or in 0 < x < b) and has a square-root singularity at
t = +1 (or at x =0, x = b) for ItI> I. That is, as may be seen from Fig. 4, uxAx,O) is
discontinuous and is unbounded at the end points of the stiffener.

4. THE CRACK·STIFFENER PROBLEM-THE INTERNAL CRACK

For uniform tension Po, PI = P2 =0, and 8 =0 from (12) and (15) the integral equations of
the problem shown in Fig. I may be obtained as follows:

(- 2a < x <0). (25)

a

5
b 0.5

1.0

5

Fig. 3. Variation of the cleavage stress (1'•• with the radial distance from an end point of the stiffener for
8=0.
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Fig. 4. Variation of the normal stress (T.. on the surface of the stiffened half plane.

The solution of (23H25) is to be obtained under the following conditions:

f d1.(1) dl =0, fd f2(t) dt =0, fO h(Xo) dxo =O.
c C -2Q

(26a-c)

For e > 0 the integral equations (23H25) have simple Cauchy-type kernels. Consequently,
the functions lit (i =1,2,3) have square root singularities and are of the form shown by (22).
These equations may easily be solved by using a Gaussian quadrature formula[7]. From the
viewpoint of fracture analysis, the quantities which are of primary interest are the stress
intensity factors which may be obtained as follows:t

kl(e) =lim Y(2(e - s»O'....(s, 0), k2(c) =lim Y(2(e - s»o'%y(s, 0),
s~c I~C

kJ!d) =lim Y(2(s - d»O'....(s, 0), k2(d) =lim Y(2(s - d»O'%y(s, 0),
c~d I~d

k2( - 2a) = lim Y(2(2a + x»O'%y(x, 0), k2(0) = lim v( - 2x)u%y (x, 0).
%--2Q %~-

(27a, b)

(28a, b)

(29a, b)

5. THE EDGE CRACK
The integral equations (23H2S) are valid for all cracks perpendicular to the boundary,

including the physically important case of an edge crack for which c =O. It may be observed
that for c =0 the kernels of the integral equations are of the generalized Cauchy type; that is, in
addition to simple Cauchy singularities, the kernels contain terms which become unbounded at
the end point x =0 =s. Consequently, at the end point x =0 =s the functions Ii, (i =1, 2, 3)
would not have the standard square-root singUlarity.

First, we note that for a sectionally holomorphic function F(z) defined by

F(z) = 1. fb l<t) dt
1r Q t-z

where

_ f(l)
I(t) - (t _ a)C(b _ 1)6' (- 1< Re (a, {3) < 1),

tNote that for the geometry under consideration

a a
I.(Y) =ay(II,( +0. Y)-II,( -0. y)) and I,j.y) =a(v,( +O. y)- 0,( - o. y».

. Y

s=- Y. (T.s =- (T.,/, and in transforming the coordinates the notation I.(s) =1;(y(s)l. (i =1.2) is used.

(30)

(31)
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one may express the following asymptotic relation [7, 8}:

where <11(/) is a bounded function and Fa is either bounded or has singularities of order lower than
that of F(z)[8]. Also note that

1 fb (I) d 2 fb f(t) d2

;: Q~ dl =dzF(z), ;: Q (t _ d dl =d?F(z).

By observing that for a < x < b F(z) is homolorphic at z = 2a - x, one could write

1 fb f(t)dl 1 dft

;: Q (l+x_2at+l=n!dzftF(2a-x), (a<x<b).

(33)

(34)

Thus, for c = 0 the asymptotic values of all the integrals in (23)-(25) may be expressed in terms
of the corresponding holomophic functions by using the general relations (32) and (33) and
specific expressions of the form (34). For this, it is sufficient to expand the kernels into simple
fractions. For example,

(35)

for which the related function F2(z) would be holomorphic at z = =+= it if - 2a < x < 0 (see eqn
25).

We now let the unknown functions fi, (i = 1,2,3) in (23H25) be defined by

Also let

1/>3(t)
M/) = (_ I)J(I +2a)0' (- 2a < 1< 0), 0 < Re(a, (3, 'Y, w) < l.

Fj(z) =~.!. fd IN) dl, (j = 1,2),
1+ K2 11' Jo 1- z

(36)

(37)

(38)

(39)

(40)

By substituting from (36)-(38) into (23H25) and by using the function-theoretic method
described above, the following characteristic equations may be obtained to determine the
constants a, (3, 'Y and w:

1 [ 2)<MO) 2 !!P. <113(0)] -sin 11'{3 (l - cos '1T{3 - 4{3 +2{3 dOl +({3 - ) cos 2 (2a t - 0,

1 [ 2· cb,(0) . !!p. <113(0)] _
sin '1T{3 (cos '1T{3 -1 +4fJ - 2fJ "7+ ({3 -I) sU' 2 (2at - 0,

(4Ia-e)

(42)

(43)
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_1_[_ ?J. !t(O) _.. ~~_. !l(0)]_
sin ."./3 2/3 cos 2 d" +2(1 /3) SID 2 d'" cos ."./3 (20)" - o. (44)

At the end points, the functions f/(I), (i =1,2,3) are bounded and nonzero. Hence, eqns
(41) give the following expected results corresponding to square-root singularities:

fI) =1/2, 'Y =1/2, a =1/2. (45)

Since it is assumed that (MO);t: 0, (i = 1,2,3), the coefficient determinant of the linear homo­
pneous system (42)-(44) must vanish, giving the fourth characteristic equation to determine /3
as follows:

(46)

It may be observed that (46) has no root for which 0< Re(/3) < 1. For the sectionally
holomorphic function F(z) given by (30), if we now assume that the density function f(l) is
bounded at I =b and let

_ !(I)
f(l) - (1- 0)112,

the asymptotic expression of F(z) near the point z =b becomes [8)

F(z) = f(b) log (z - b) + Fo(z),
.".

(47)

(48)

where, near and at z =b, Fois bounded. With the behavior at the end points known, the density
functions fi may now be expressed as

(49a-c)

The functions 0 1 and O2 at I =d and 0 3 at I =- 24 are bounded and nonzero. However, their
behavior at 1=0 is as yet unknown. By using (48) and substituting from (49) into the intqral
equations (23) and (25), we obtain

(SOa,b)

In the third intearal equation (24) the coefficients of the loprithmic terms cancel out. At the end
point, we have x =0- and s =0+. Hence, from (SO) it follows that

(51)

Therefore, the characteristic equation (46) found by assuming that f3(0);t: 0 (which means that
13(0);t: 0 or 0 3(0);t: 0) would not be valid. Going back now to the system of equations (42)-(44),
if we let !leO) =0, and assume that f,(O);t: 0 and f2(0);t:°(42) and (43) gives

(52)

and from (44) we obtain

(53)



390 f. DELALE and f. EROOGAN

It should be pointed out that (52) is the characteristic equation corresponding to a 90° elastic
wedge for which the tractions in the neighborhood of the apex are zero. In the problem under
consideration, since uyy(x, 0) =0 and ~J(O) =0 implies that u.y( =0,0) =0, this result is expec­
ted.t The relation (53) indicates that even though bounded and nonzero, at (x = 0, y =0) the
displacement derivatives 0(U2+ - u2-)/oy and c1(V2+ - v2-)!c1y are not independent. In passing one
may also remark that at y = 0, if one forces the crack to close (i.e. if ~I(O) = 0 and ~2(0)0) and lets
~3(0) ¢ 0, from (44) one may easily recover the standard characteristic equation, namely cot
1T{3 = O.

6. SYMMETRIC COVER PLATES
The formulation of the stiffener-crack problem described in the previous sections may be

applied to a cracked half plane containing any number of stiffeners without any difficulty. In
particular, the problem is considerably simplified if there are two identical cover plates located
symmetrically with respect to the x = 0 plane and if the crack is oriented along the plane of
symmetry. In this case, f2(t) = 0 and the system of integral equations (23)-(25) reduces to

(54)

(55)

where it is assumed that the stiffeners are located on (- 2a' x < - b, y = 0) and (b < x <
2a, y =0), and the crack on (x =0, - d < y < - c). The equilibr lim and the single-valuedness
conditions under which (54) and (55) must be solved are

fd 1,(1) dt =0, J-I> !J(t) dt =O.
c -20

(56a, b)

In this problem, too, the interesting case is that of c = 0, b =0 corresponding to the crack
initiation and growth from a broken cover plate. In the case of a single cover plate - 20< x <
2a, in the absence of any cracks in the elastic half plane, the ma" mum tensile stress uuin the
cover plate would be at x = O. If the cover plate fails at this point then the problem reduces to
that discussed in [3J, where it was shown that the stress state (il the half plane) at the point
(x = 0, y = 0) has a strong singularity. This would greatly enha Ice the possibility ·of crack
initiation in the elastic half plane around this point. For b =0 and c =0 the asymptotic behavior
of the solution of (54) and (55) may a~ain be examined by definin~ I. and (3 as in (36) and (38)
and by using the function-theoretic method described in the previous section. ·In this case, the
characteristic equations are found to be

A.l(d) .1.)(-20)_
~d" cot 1TW = 0, "f' cot 1Ta 0.. (2a)(I - ,

I . [ 2- 6.(0) !!!~]_
sin 1T{3 (l - cos 1TfJ - 4{3 + 2tJ 7 + 2(tJ - 2) cos 2 (2a)" - 0,

I [ !!! ~,(O) )~)(O)] _
sin 1TfJ - 2{3 cos 2 7"- (I + cos 1TfJ (2a)" - o.

(57a, b)

(58)

(59)

tit should be emphasized that the absence of stress singUlarity at the apex of a 90" elasticwedge ~tiffenedonone side is
due to the membrane assumption made for the stiffener. If the stiffener has a finite· thickness, then the apex is a point of
stress singularity and the asymptotic behavior of the stress state around this point is similar to that of two bonded dissimilar 90·
elastic wedges (see, e.g. (5]).
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Equation (S7) gives apin the standard result II) =1/2, a =1/2 and the coefficient determinant ~
of (S8) and (S9) may be shown to be

(60)

It is again seen that ~(Il) =0 has no root (for which 0 < Re(ll) < 1).
If one now assumes that at the end point t = 0 I. and 12 are bounded and are of the form

given by (491) and (49c), by using the procedure of the previous section, it may be shown that
0 3(0) and hence !J(O) is zero. In the asymptotic relation obtained from the second integral
equation, the coefficients of the logarithmic terms cancel out, implying that (MO) is bounded
and (may be) nonzero (see, e.g. [9] for details).

7. RESULTS

The intesral equations with a simple Cauchy kernel or with a generalized Cauchy kernel
found in the previous sections are solved by using the numerical integration formulas described,
for example, in [7]. The stress intensity factors defined by (27H29) for the problem of a
uniformly loaded stiffened cracked elastic half plane are given in Tables 1-6. Tables I and 2
show the stress intensity factors for the interface shear stress at the end points x =°and
x =- 2a of the stifener for the case of an internal crack (c > 0, 8 = 0, Fig. I). In Table I, the
length of the crack is fixed and its relative distance to the boundary So = (d + c)/2a is varied. In
Table 2, the crack length is varied for a fixed distance. In the tables the dimensionless constant
A· defined by

(61)

is a measure of the relative stiftness of the cover plate, smaller A· corresponding to stifter
cover plates. The tables indicate the expected trends, namely that generally the stress intensity
factors increase with increasing cover plate stiffness. Tables 3 and 4 show the corresponding
stress intensity factors at the ends of the internal crack which are defined by (27) and (28). It
may be seen that the mode II stress intensity factors kz(c) and kz(d) are very small in
comparison with the mode I values k.(c) and k\(d) indicating that a subcritically growing crack

Table I. Variation of the stress intensity factors ki - 2a) and k2(0) for the interface shear stress with the
crack location• .ro=(d+c)/(2a)-the case of internal crack. A·=(a/h)(P2/~I)(I+KI)/(I+K2), 1=

(d - c)/(2a) =I

~. 0.2 1 4 0.2 1 4

1.1 0.519 0.406 0.237 -1. 074 -0.918 -0.633
1.5 0.605 0.488 0.305 -0.642 -0.521 -0.325
2 0.602 0.494 0.321 -0.546 -0.442 -0.279
3 0.541 0.447 0.296 -0.493 -0.402 -0.260
5 0.487 0.401 0.264 -0.474 -0.389 -0.255

Table 2. Variation of ki - 2a) and kiO) with crack length, 1= (d - cl/2a, So =(d + c)/(2a) = I

~ 0.2 1 4 0.2 1 4

0.1 0.472 0.388 0.254 -0.473 -0.389 -0.255
0.25 0.478 0.391 0.255 -0.486 -0.399 -0.260
0'.5 0.496 0.402 0.256 -0.543 -0.445 -0.286
0.75 0.510 0.406 0.248 -0.700 -0.580 -0.375
0.9 0.494 0.387 0.228 -1.015 -0.867 -0.598 I
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Table 3. Variation of the stress intensity factors at the crack tips S = e and s = Ii with the crack location.
So = (e + d)/(2a), 1= (d - e)/(2a) = I (internal crack)

;;;< 0.2 1 4 0.2 1 4 0.2 1So 4 0.2 1 4

1.1 1.535 1.550 1.592 -0.077 -0.045 -0.001 1.092 1.116 1. 155 0.075 0.062 0.040

1.5 1.055 1.088 1. 140 0.042 0.035 0.021 1.034 1.048 1.071 0.052 0.040 0.022

2.0 1.010 1.030 1.059 0.051 0.039 0.024 1.023 1.030 1.041 0.035 0.026 0.014

3.0 1.011 1.017 1.025 0.029 0.022 0.011 1.015 1.017 1.021 0.016 0.012 0.006

5.0 1.008 1.009 1.010 0.008 0.006 0.003 1.008 1.008 1.009 0.005 0.004 0.002

Table 4. Variation of the stress intensity factors at the crack tips with the crack length. 1= (d - c)!(2a).
So =(e + d}/(2a) = I (internal crack)

~ 0.2 1 4 0.2 1 4 0.2 1 4 0.2 1

0.1 0.913 0.935 0.967 0.035 0.027 0.015 0.919 0.940 0.970 0.039 0.030

0.25 0.919 0.943 0.979 0.033 0.026 0.014 0.932 0.952 0.982 0.042 0.032

0.5 0.965 0.993 1.037 0.023 0.020 0.014 0.966 0.987 1.018 0.050 I 0.039

0.75 1.130 1. 160 1.212 -0.008 0.001 0.010 1.021 1.044 1.081 0.0621 0.050
0.9 1. 500 1. 512 1.549 -0.083 -0.050 -0.004 1.080 1. 105 1.145 0.073 0.061

Table 5. Stress intensity factors k2( - 20). k,(d). and k2(d) for the case of a single stiffener and an edge
crack (e =0) (see insert in Fig. 5)

K2(-2a)/p/i K1(d)/polan" K2(d)/P/d72

~w 0.2 1 10 0.2 1 10
d/a 0.2 1 10

0.1 0.441 0.369 0.169 2.670 2.434 1.838 -0.380 -0.300 -0.095
, 0.25 0.393 0.335 0.161 1.959 1.877 1.667 -0.184 -0.143 -0.039

i 0.5 0.308 0.269 0.138 1.687 1. 667 1.606 -0.071 -0.055 -0.015

/1 0.152 0.138 0.081 1.591 1.589 1.586 -0.010 -0.008 -0.002

Table 6. Stress intensity factors k2( - 20) and k,(d) for two symmetric stiffeners and an edge crack (c = 0)
(see insert in Fig. 6)

~. 0.2 1 10 0.2 1 10
d/a

0.1 0.469 0.386 0.171 4.014 3.443 2.110

0.25 0.402 0.341 0.162 2.351 2.183 1.753

0.5 0.308 0.269 0.139 1.792 1.750 1.632

1 0.152 0.138 0.081 1.601 1. 597 1.587

generally would remain in the direction approximately perpendicular to the boundary. One may
also observe that the mode I values tend to slightly decrease with increasing cover plate
stiffness or decreasing A*.

Table 5 shows the results for the edge crack (i.e. c == 0) in a half plane stiffened by a single
cover plate. Note that in this case, k2(0) for the interface shear is zero. The results are given
only for (dla)!5'.1 as they appear to remain relatively constant for (dla» I. This may be seen
from Fig. 5 giving the mode I stress intensity factor at the crack tip as a function of dla. The
asymptotic value of the stress intensity ratio for (dfa)-+oo shown in the figure is that of a
uniformly loaded unstiffened half plane containing an edge crack. The figure Shows that as
(dla)-+O the stress intensity factor becomes unbounded. This is, of course due to the fact that
in this case, the governing stress field itself is singular (see Fig. 3). It may also be seen that as
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d/o

Fig. 5. Variation of the mode I crack tip stress intensity factor with the crack lenath for various stiffness
parameters A· == [al£2(1 + 1(1))/[h~l(I + 1(2)) in a half plane containina an edae crack and a sinale stiffener.

4
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1
0

d/o
Fig. 6. Variation of the mode I crack tip stress intensity factor with the crack leqth in a half plane

containina an edge crack and stiffened by two symmetric cover plates. A· = [al£2{J + I(I))/["~I(I + 1(2)).
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A* decreases, the stress intensity factors tend to increase due to the increase in the "stress
concentration" around the stiffener.

The results for two symmetric cover plates are shown in Table 6. In this case, the stress
intensity factor for the contact shear k2(O) and that at the crack tip for mode II k2(d) are zero.
The important stress intensity factor kl(d) is also given in Fig. 6. Again, it may be seen that for
(d/a) > I, the effect of the cover plates appears to be negigible (this general result may also be
observed from the stress distributions given in Fig. 3 and 4). Comparison of the results given in
Fig. 5 and 6 indicates that the stress intensity factor for the two cover plate case is consistently
greater than that for a single cover plate.
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APPENDIX A
The functions Kii appearing in eqns (J I:

K Y+Y, Y-YI 2(x-x,f(y+y,) 2(X-X,)2(y-y,)
,,- (y+ y,)1+(X- XI)2 (Y- y,)'+(X-XI)2+[(y+ y,)2+(x-x,)lll-[(y- YJ!2+(x-X,)ll'

2 [6(X - X,)'(y + y,)' + 2YI(Y + YI)3 - 6(x - XI)2 y,(y + YI) - 2(x - XI)' + IX - xdL (Y + YI)2 ]
- y, [(Y+ y,)l+(X-x,)2P [(Y+ y,)l+(X-Xt)lj2 ,

{
(X-X.)2_(y- y,)2 (x- x,f-(Y+ YI)2

K12 = (x - XI) [(Y _ y,)2 +(x _ XI)2]' [(y + y,f + (x _ x,lll2

_ 4 y((y + y,)'_ (x - xtl'l + 2(y + y,)lex - X,)2 - (Y + Y,f + 2YI(Y + Y,)l}
YI [(y+ YI)l+(x-x,llp •

K x-x, X-XI 2(x-x,)(y-y,)'
" = (Y+ Yd' +(x-X,)2+ (Y- YI)2+(x-x,f [(Y- YI)2+(x-x,ff

2(x-xJ![(y+ Yd2-2YI(v+ y,)J 4 (x-xl)l(2y+ YI)+(x-x.)[3y,(y+ {,)2_ 2(y+ YI)l]
+ [(Y+YI)l+(X-Xl)lf + Y, [(Y+YI)2+(X-XI)2J '

K _ (Y- Y,)[(Y- y,)'_(X-xIPJ+(Y+ y,)[(y+ YI)2_(X-X,)2j
12- [(Y_ Y,l2+(X-xlff [(y+ Yd2+(x-x,ff

- [(Y + y,)':Y;X _ X,)'jl[4(x - XI)2[(y + YI)2 - (X - X,)2 - 2Yl(Y + Ylll

+[(Y + YI)2 + (X - x,)2j[3(x - X,)2 - (Y + Yd2+ 2YI(Y + y,JI),

(Y - y,)[(y - YI)2 _ (x - X,)2j (y + YI){(Y + y,f - (x - XI)2J
[(y-y,)l+(X-x.lljl + [(y+y,)l+(x-x,llF

2y,[(y + YI)2 - (x - Xl)ll 4yy,(y + y,)[(y + YI)2 - 3(x - X,)2]
- «y+ y,f+(x-xJ!2f f(y+ y,)2+(X-x,)2jl '

X- x, x - XI 2(x - XI)(Y - Y,l2
Kl2 (Y _ YI)2 + (X - xll2 (y + y,)2 + (x - xill + [(Y - Y,ll + (X - X,l2f

2(x - XI)(Y + 1,l2 4(x - xl)yy.[3(y +Y,i - (X - xl)21
[(y+ y,)2+(x-x,fF [(y+ y,)1+(x-x,)2f .
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APPENDIX B
The kernels lejj appearing in eqns (\ 2):

kll(s. I) =~'){ -cos 8+(2(1 - s)sin2/1cos /1-(1+ s)cos3 /1IR-2

"'\/(2+ 1-5

+[(I - s)(5/2 - S2) sin2 /I cos3 /1- 2/(1 + S)2 cos' /1- (I - S)3 cos lIsin4 /1)R-4

+(4/2(1 + 5)) cos' /I +8/2(1 +5)(41s - 12 - S2) sin2 /I cos'/l

- '2/2(1 - 5)2(1 +5) sin4 /I cos3 I1)R-6J.
2/J,,{ -sin 11 . 3 -2

1e12(S./)=~,) --+(/-5)5'" 8R
"'/(2 + 1- S

+sin 8 cos4 6«1 + S)(/2- S2 -81S) +415(1- s»)R-4

+sin3 11 cos2 11(1 - 5)(17/2+ S2 - IOls)R-4

+(8 sin 6c05'61(1- 5f(1 + sr - sin' 11 C05284/(1 - 5)3(41 - 3s)

+4sin3 6COS4 IJt(l2-s2)(s2- 2,z+7/5»)R-6}.

len(s. Xo) = -~{ ((s sin 11 - Xo)3 cos211 + S2 sin28cos21(s sin 11 - Xo)

- 2sin 6cos26s(ssin 6- XorUs2cos2IJ+ (s sin 6- Xorr2J.

k21(s. t) = -da-,){ -sin /I + [(I - s)(sin3 6- sin /I cos26) - (I + 5) sin 6 cos2I1IR-2

"'\/(2+ 1- s

+(I + s)(2ls - S2 - 5/2) sin 8cos4 8+(I - s)2(31- s) sin3 11 cos281R-4

+(4/(1 + 5)2(1 - 5)(21 - s)sin 8cos' IJ+ 81S(1 - 5)(3/2 - 52) sin] 8cos4 6

- 4/(1 - s)3(21 +s) sin' 6cos211 cos28)R-6J.

k22(s. t) = 1r(:+2/(2)eo~: - (I - 5) sin26cos 6R-2+(8/(t - S)2 cos 11 sin4 6

+cos3 /I sin28{(I + S)(/2- S2 -41S) - 2(1 - 5)(5,z + s2 - 21S)]

+ (I +5)(52- t2+41S) coss 6)R-4 +(4t(1 - s)(t +5)(412- 3s2-71S)

x sin2 /I cos' /I +41(1 - 5)3(21 - s) sin4 /I cos3 /I

- 81(1 - S)4 sin'/I cos 6]R-6 }.

- S2( s sin /1- Xo) cos3 /I sin /1- sIs sin 6- Xo)2(sin2 /1- cos26) cos 6].

R2 = (I +d cos2 /I +(I - sjl sin' 6.
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